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1. Introduction

Vortex strings provide an interesting probe of four dimensional quantum field theories,

where questions about the strongly coupled gauge dynamics can be answered by studying

the solitonic string worldsheet [1, 2].

In this approach one starts with a U(Nc) gauge theory, coupled to a number Nf of

fundamental scalar fields Q, where Nf ≥ Nc. In general, the low-energy physics of interest

is strongly coupled; let us call it Phase A. To study this system, the theory is first deformed

by inducing a vacuum expectation value for Q. If Q is made sufficiently large, and the

gauge group is fully Higgsed, then this deformed theory will be weakly coupled. We will

refer to this weakly coupled system as Phase B.

While Phase B is amenable to semi-classical analysis, it appear to be an unlikely place

to understand the strongly coupled dynamics of Phase A. However, Phase B admits vortex

strings, stabilized by the winding of Q in the plane transverse to the string. While the

4d bulk is weakly coupled, the low-energy 2d dynamics of the string is typically strongly

coupled, and has been shown to capture information about the original Phase A of the

4d theory. The low-energy modes of interest on the string worldsheet arise from the em-

bedding of the vortex in the U(N) gauge group, and the resulting worldsheet dynamics is

described by some variant of the CPN−1 sigma-model [3, 4]. In certain systems, the quan-

tum fluctuations of this 2d CPN−1 sigma-model mirror the underlying fluctuations of the

4d U(N) non-Abelian gauge theory in Phase A. Indeed, analogies between 2d sigma-models

and 4d gauge theories have been studied for over 30 years: the vortex string provides a

map between the two.
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The programme described above was first implemented in N = 2 supersymmetric the-

ories, for which the worldsheet theory of the vortex string has N = (2, 2) supersymmetry.

It was shown in [1, 2], following earlier work of [5, 6], that one may recover the Seiberg-

Witten curve [7 – 10] from the worldsheet. Moreover, the exact BPS quantum spectrum of

the 2d worldsheet theory coincides with that of the 4d gauge theory, with the quarks and

W-bosons appearing as elementary excitations of the string, while the monopoles, which

are necessarily confined in the Higgs phase, appear as kinks on the vortex string [11]. Sys-

tems with less supersymmetry were subsequently discussed in [12, 13] where qualitative

agreement between the worldsheet and bulk theories was found.

The purpose of this paper is to study a limit in which the vortex worldsheet becomes

superconformal. It is well known that there exist special loci on the moduli space of four

dimensional N = 2 gauge theories where particles carrying mutually non-local charges

become massless [14 – 17]. At these “Argyres-Douglas points”, the low-energy physics is

described by a strongly interacting superconformal field theory (SCFT). We will examine

the worldsheet theory of the vortex string associated to this point: it is given by the

N = (2, 2) supersymmetric CPN−1 sigma-model, deformed through the addition of a

classical potential. We will see that the parameters of the potential are tuned so that the

CPN−1 model flows to an interacting SCFT which we identify as the AN−1 mimimal model.

We compare the scaling dimensions D of chiral primary operators in the 2d and 4d

SCFTs. The spectrum of relevant perturbations in four dimensions splits into two classes:

those with D < 1 and those with 1 ≤ D < 2. Deformations in the former class are associ-

ated to changing the parameters of the theory, while those in the latter class are associated

to changing vacuum expectation values (vevs) of fields [15]. We will show that the former

descend to chiral primary deformations on the worldsheet where their scaling dimensions in

the 2d SCFT coincide with those computed in 4d. In contrast, perturbations in the latter

class take us away from the Higgs vacuum and are not seen directly on the worldsheet.

The paper is organized as follows. Section 2 deals with the bulk theory in Phase A. We

review the classical four-dimensional gauge theory of interest, identify its superconformal

point and compute the scaling dimensions of chiral primary operators. To my knowledge,

this particular Argyres-Douglas point on the moduli space has not been previously discussed

in the literature although, as we shall see, the resulting SCFT is not new and falls into

the standard ADE classification [16, 17]: we will find the A2N−1 4d SCFT appearing in

the moduli space of U(N) gauge theory with N hypermultiplets. Section 3 deals with the

worldsheet. After reviewing how the CPN−1 model arises as the low-energy dynamics of the

vortex string, we identify its superconformal point and show that the dimensions of chiral

primary operators coincide with those in the 4d bulk. We further show how motion along

the Higgs branch of the four-dimensional theory induces a superpotential on the worldsheet

and comment briefly on a novel type of mirror symmetry of finite N = (2, 2) theories.

2. The bulk theory

Throughout this paper we will study N = 2 supersymmetric gauge theories in four di-

mensions, with U(Nc) gauge group and Nf ≥ Nc fundamental flavors. In terms of N = 1
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superfields, the N = 2 theory contains a vector multiplet Wα and a chiral multiplet Φ,

both in the adjoint of the gauge group. Wα and Φ form the N = 2 vector multiplet.

There are further chiral multiplets Qi in the fundamental Nc representation, and Q̃i in

the N̄c representation, where i = 1, . . . , Nf is the flavor index. Qi and Q̃i form the N = 2

hypermultiplet. We denote the complex scalar components of Φ, Qi and Q̃i by the same

letter.

This theory admits semi-classical vortex strings only when it lives in the Higgs phase,

in which the gauge group is spontaneously broken by inducing a vacuum expectation value

for Q (referred to as Phase B in the introduction). We may implement this in a manner

consistent with N = 2 supersymmetry by turning on a Fayet-Iliopoulos parameter v2 for

the central U(1) ⊂ U(Nc). The adjoint-valued D-term equation then imposes [Φ,Φ†] = 0,

together with

Nf
∑

i=1

Qa
i (Q†)ib − (Q̃†)ai Q̃i

b = v2δa
b (2.1)

with a, b = 1, . . . , Nc the color indices. Because the left-hand side of (2.1) has rank Nf , while

the right-hand side has rank Nc, there can be solutions only when Nf ≥ Nc and we restrict

to this case. For Nf < Nc there are no supersymmetric vacua and, more importantly for us,

no vortices. The vacuum structure is also dictated by the superpotential, which is fixed by

N = 2 supersymmetry to be of the familiar form W =
∑

i Q̃i(Φ−mi)Qi with mi complex

mass parameters. The resulting F-term equations are

Nf
∑

i=1

Qa
i Q̃i

b = 0 ,

Nc
∑

b=1

Φa
b Qb

i = miQ
a
i ,

Nc
∑

b=1

Q̃i
b Φb

a = miQ̃
i
a (2.2)

The supersymmetric vacuum states of the theory are given by solutions to (2.1) and (2.2),

together with [Φ,Φ†] = 0. When v2 = 0, there is a Coulomb branch of vacua, parame-

terized by Φ = diag(φ1, . . . , φN ). This Coulomb branch is the Phase A referred to in the

introduction. In contrast, when v2 6= 0, the Coulomb branch is lifted and Φ is forced to

take specific values. If the masses mi are distinct, there are
(Nf

Nc

)

isolated vacua in which

Nc of the Nf quark fields Q get an expectation value. Without loss of generality, we choose

to work with the vacuum in which the first Nc flavors turn on,

Φ = diag(m1, . . . ,mNc) , Qa
i = vδa

i , Q̃i
a = 0 (2.3)

This is Phase B. The spectrum of excitations around this vacuum is gapped. However, as

the parameters are varied, new massless fields can appear, sometimes accompanied by new,

continuous, branches of vacua. For example, when v2 = 0, a Coulomb branch of vacua opens

up, parameterized by Φ. In contrast, when some subset of the masses coincide, a Higgs

branch of vacua opens up, parameterized by gauge invariant combinations of Q and Q̃.

Before discussing the quantum theory, let us pause briefly to examine the pattern of

symmetry breaking. As well as the U(Nc) gauge symmetry, the theory also enjoys an

SU(Nf ) flavor symmetry. Both of these are broken spontaneously in the vacuum (2.3) in
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way that locks color and flavor rotations together,

G ∼= U(Nc) × SU(Nf )
v

−→ H ∼= [U(Nc)diag × U(Nf − Nc)]/U(1) (2.4)

Notice in particular that the central U(1) ⊂ U(Nc) is broken, providing the topology

necessary to support vortex strings. The right-hand side of (2.4) is further, explictly

broken by masses m, which transform in the adjoint representation of the flavor group.

When mi 6= mj for all i 6= j, only the Cartan subalgebra remains,

H
m
−→ U(1)Nf−1 . (2.5)

2.1 The superconformal point

In the following section, we will study the quantum dynamics of vortex strings which exist

in the classical vacuum (2.3). For now, we wish to study the quantum dynamics in four-

dimensions. As explained in the introduction, our interest lies ultimately not in the Phase

B vacuum (2.3) — which is weakly coupled when v2 is sufficiently large — but instead in

Phase A with v2 = 0. This phase is defined by starting in (2.3), and adiabatically changing

v2 to zero. We wish to ask where on the Coulomb branch we end up. Classically, this

vacuum is given by

Φ = diag(m1, . . . ,mNc) , Qa
i = Q̃i

a = 0 (2.6)

which defines a point on the Coulomb branch. However, this vacuum may receive quantum

corrections. In general, the vacuum we want is the point on the Coulomb branch known

as the “root of the baryonic Higgs phase”. At this point, Nc of the Nf flavors of quarks

develop a massless component, ensuring that a FI parameter v2 may induce a vev for the

baryon operator B1...Nc = εa1...aNc
Qa1

1 . . . Q
aNc

Nc
= vNc , without affecting Φ.

To determine the correct vacuum on the quantum corrected Coulomb branch, we turn

to the Seiberg-Witten curve [7, 8]. For Nf < 2Nc, the curve is given by1 [9, 10]

y2 =

Nc
∏

a=1

(x − φa)
2 − 4Λ2Nc−Nf

Nf
∏

i=1

(x − mi) (2.7)

with Λ the strong coupling scale of the gauge theory, given in terms of the 4d gauge coupling

e2, defined at the RG subtraction point µ,

Λ2Nc−Nf = µ2Nc−Nf exp

(

−
4π2

e2(µ)

)

(2.8)

The presence of Nc massless quark fields provides a smoking gun in the search for the root

of the baryonic Higgs phase, for the curve must develop a suitable degeneracy at this point.

Assuming that the first Nc of the Nf quarks will become massless, it will prove notationally

1For the Nf = 2Nc − 1 theory, it is customary to shift the masses appearing in the curve by mi →

mi + Λ/Nc.
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useful to relabel the excess masses m̃i = mNc+i with i = 1, . . . , Nf − Nc. Then the root of

the baryonic Higgs phase is given by [6],

Nc
∏

a=1

(x − φa) =

Nc
∏

i=1

(x − mi) + Λ2Nc−Nf

Nf−Nc
∏

i=1

(x − m̃i) (2.9)

which is to be considered as an equation for φa with fixed mi and m̃i. Note that in the

weak coupling regime, mi À Λ, this coincides with the classical vacuum (2.6) while, in

the opposite extreme mi = m̃i = 0, it agrees with the root of the baryonic Higgs branch

described in [18]. To see that this is indeed the correct point we can re-examine the curve,

which degenerates when (2.9) is obeyed,

y2 =





Nc
∏

i=1

(x − mi) − Λ2Nc−Nf

Nf−Nc
∏

i=1

(x − m̃i)





2

(2.10)

signalling the presence of the desired N massless quark hypermultiplets.

For fixed masses mi and m̃i, the center of the vortex string is therefore described by the

point (2.9) on the Coulomb branch. Our goal now is to tune the masses mi, leaving m̃i fixed,

such that further states become massless. If these carry mutually nonlocal charges with

respect to the quarks, then the resulting four dimensional theory will be superconformal.

One finds the maximally degenerate curve is given when the masses mi satisfy

Nc
∏

i=1

(x − mi) = xNc + Λ2Nc−Nf

Nf−Nc
∏

i=1

(x − m̃i) (2.11)

at which point the curve is simply y2 = x2Nc . At this point, magnetic (or dyonic) degrees

of freedom become light, joining with the quarks to form an interacting SCFT. There are

a number of ways to see that this is indeed the case. For example, a simple criterion was

provided in [15] which states that one gets an interacting SCFT if extra particles become

massless without opening up new Higgs branches of vacua; one may indeed check that no

new vacuum moduli spaces appear when (2.11) is satisfied.

2.2 The case Nf = Nc

For the remainder of this section, we will focus on the simplest case with Nf = Nc ≡ N

for which all the important elements are present. We will return to the general case of

Nf > Nc in section 3.3. Equation (2.11) defining the superconformal point is now

N
∏

i=1

(x − mi) = xN + ΛN (2.12)

which is simply solved by tuning the masses to the critical point,

mk = − exp(2πik/N)Λ , k = 1, . . . , N (2.13)
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We would now like to identify which SCFT we have found by computing the dimensions

of chiral primary operators. This may be achieved by expanding the Seiberg-Witten curve

around the singular point [15]. Let us recall how this works:

Our N = 2 theory has a classical U(1)R symmetry that suffers an anomaly: only

a Z2N subgroup survives quantization. This remnant discrete symmetry is itself broken

explicitly by the masses. However, at the critical point (2.13), superconformal invariance

requires that an accidental U(1)R symmetry is restored in the infra-red. This enhanced

symmetry is manifest in the curve which, at the singular point, is invariant under U(1)R
with the charge assignment R[y] = NR[x]. The dimensions of chiral primary operators

in N = 2 superconformal theories satisfy D = 2I + 1
2
R, where R is the U(1)R charge

and I is the SU(2)R spin. The chiral primary operators of interest deform the SCFT

along the Coulomb branch and have I = 0. Hence D = 1
2
R. Expanding the curve about

the superconformal point provides a method to compute the R-charge, and hence the

dimensions, of all chiral primary perturbations. To perform this calculation, it is useful to

employ the parametrization,

N
∏

a=1

(x − φa) = xN +

N
∑

j=1

sj xN−j ,

N
∏

i=1

(x − mi) = xN +

N
∑

j=2

νj xN−j (2.14)

Notice that we have set ν1 =
∑N

i=1 mi = 0, which we may always do in a U(Nc) gauge

theory by a suitable shift of s1 = Tr Φ. The superconformal point (2.13) corresponds to

sj = νj = 0 for j = 1, . . . , N − 1 and νN = ΛN , sN = 2ΛN . Expanding about this

superconformal point, we write νj = ν̂j for j = 2, . . . , N−1; sj = ν̂j+ŝj for j = 1, . . . , N−1;

νN = ΛN +ν̂N and sN = 2ΛN +ν̂N +ŝN . The deformations ν̂j shift both the masses and the

expectation values and leave us at the root of the baryonic Higgs phase (2.9). In contrast,

the deformations ŝj take us away from this locus. Expanding the curve (2.7) for Nf = Nc

around the singularity at x = 0 we have

y2 ≈ x2N + 4ΛN
N

∑

j=1

ŝj xN−j + 2xN





N
∑

j=2

ν̂j xN−j



 +





N
∑

j=2

ν̂j xN−j +

N
∑

j=1

ŝj xN−j





2

To preserve the the Argyres-Douglas singularity, we must assign relative scaling dimensions

to the operators,

D[ν̂j ] = j D[x] and D[ŝj] = (N + j)D[x] . (2.15)

It remains to determine the dimension of x itself, and hence the overall normalization. This

is fixed using the fact that BPS masses are obtained by integrating the Seiberg-Witten 1-

form λSW around closed cycles αa of the curve. The 1-form is given by

λSW =
1

2πi

∂P (x)

∂x

x dx

y
, P (x) =

N
∏

a=1

(x − φa) (2.16)

The dual scalar φa
D, which necessarily has dimension D[φi

D] = 1, is then obtained by the

contour integral ∂φa
D/∂sb =

∮

αa
∂λSW/∂sb. The upshot of this is that the dimensions are

– 6 –



J
H
E
P
1
2
(
2
0
0
6
)
0
5
1

constrained to obey D[ŝj]+ (N − j +1)D[x]−D[y] = 1, from which we learn the spectrum

of relevant perturbations of the SCFT,

D[ν̂j] =
j

N + 1
j = 2, . . . , N (2.17)

D[ŝj] =
N + j

N + 1
j = 1, . . . , N

The deformations with dimensions D < 1 are associated to varying the mass parameters

of the theory and leave us at the root of the baryonic Higgs phase where vortices exist. As

we will see shortly, these deformations manifest themselves on the string worldsheet. In

contrast, deformations with dimension D ≥ 1 involve only a variation of field expectation

values, and take us away from the root of the baryonic Higgs phase where no vortex strings

live. The two types of deformations are analogous to the familiar non-normalizable and

normalizable perturbations in AdS/CFT. As explained in [15], it is a general feature of 4d

N = 2 SCFTs that these two types of relevant parameters come in pairs satisfying

D[ν̂j] + D[ŝN−j+2] = 2 , (2.18)

The mass parameters mi are associated to the U(1)N−1 flavor symmetry (2.5): once these

symmetries are weakly gauged, the masses appear as background expectation values. The

fact that D[ν̂
1/j
j ] 6= 1 implies that this flavor symmetry does not act in the SCFT, but

rather couples, after weak gauging, through irrelevant interactions. Giving an expectation

value to turn on the masses then deforms the SCFT by a relevant operator which, from

the pairing (2.18), takes the form

δL =

N
∑

j=2

νj

∫

d4θ SN−j+2 . (2.19)

where Sj is the N = 2 superfield containing sj as its lowest component and
∫

d4θ denotes

integration over one half of N = 2 superspace. In contrast, the dimension of D[s1] = 1

implies that the associated singlet mass Tr Φ couples to a current — identified with U(1)B
in the SU(Nc) theory — which gives rise to conserved charges within the SCFT.

We note in passing that our SCFT lies at a different point than those usually discussed

in the literature. For example, in [16, 17] one sets all the masses equal, mi = m, and

subsequently adjusts m to find further massless particles. Here, however, we have set
∑

mi = 0 and sought the superconformal point lying at the root of the Higgs phase (2.9).

Nonetheless, the spectrum of chiral primary operators that we have found falls within the

categorization presented in [16, 17]; indeed, the SCFT at the root of the U(N) baryonic

Higgs phase is the same as the one within the pure SU(2N) super Yang-Mills theory. This

is the A2N−1 series of 4d N = 2 SCFTs.

3. The worldsheet theory

In this section we return to Phase B, described by the classical vacuum (2.3), in which the

gauge group is fully Higgsed by the expectation value of Q. We will construct an infinite,
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straight vortex string in this background and study its low-energy dynamics. We will show

that precisely when the masses are tuned to the Argyres-Douglas point, the worldsheet

theory will also flow to a SCFT which we identify as the N = (2, 2) minimal model.

In the Higgs vacuum, the topology Π1(G/H) ∼= Z of the symmetry breaking described

in (2.4) supports vortex strings, stabilized by the phase of Qi
a winding in the plane trans-

verse to the string. Straight, infinite vortex strings stretched in, say, the x3 direction are

BPS objects described by solutions to the classical non-Abelian Bogomolnyi equations,

D1Qi = iD2Qi , F12 = e2

(

∑

i

QiQ
†
i − v2

)

(3.1)

Here e2 is the gauge coupling constant. Both Φ and Q̃ remain in their classical vacuum

state (2.3) in the vortex solution. Equations (3.1) are the non-Abelian generalization of

the vortex equations appearing in the Abelian Higgs model. The solutions describe strings

of tension T = 2πv2 and width2 L = 1/ev. As we now review, the non-Abelian embedding

endows the vortex with interesting dynamics.

3.1 The classical worldsheet: Nf = Nc

The low-energy dynamics of vortex strings always includes two Goldstone modes associated

to their transverse fluctuations. More important for us will be further massless (or light)

modes on the worldsheet that arise from the embedding of the vortex in the non-Abelian

gauge group. In this section we review the internal modes of the vortex, restricting to the

Nf = Nc ≡ N theory. We will return to the general case of Nf > Nc at the end of the

paper. A more complete review of these solitons can be found in [19].

We start by describing the vortex worldsheet dynamics when the masses mi = 0.

Suppose we have a solution (q, a) to the Abelian U(1) vortex equations. Then we may

always construct a solution to the non-Abelian vortex equations by an embedding in the

upper-left-hand corner,

Qa
i =







q
. . .

v






, Aa

b =







a
. . .

0






(3.2)

The vacuum state of the 4d theory has a surviving SU(N)diag symmetry, which is the

diagonal combination of a gauge and flavor rotation. This acts on the solution (3.2) as

Q → UQU † and A → UAU † − i(∂U)U † to provide further Goldstone modes on the world-

sheet. Dividing by the stabilizing group, the internal low-energy dynamics of the vortex is

described by a d = 1 + 1 sigma-model with target space [3, 4]

SU(N)diag/SU(N − 1) × U(1) ∼= CPN−1 (3.3)

The vortex is 1/2-BPS in the N = 2 4d gauge theory, ensuring that 2d worldsheet theory

has N = (2, 2) supersymmetry, with the fermi zero modes of the string providing the

worldsheet superpartners.

2Throughout this paper we have not distinguished the four-dimensional U(1) gauge coupling from the

SU(Nc) gauge coupling. The width L of the vortex string is determined by the Abelian coupling constant.
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There is a way to write the supersymmetric CPN−1 sigma-model in terms of an N =

(2, 2) supersymmetric U(1) gauge theory that will prove useful in solving for the quantum

dynamics [20 – 22]. Consider an auxiliary U(1) field strength on the worldsheet, living in

a twisted chiral multiplet Σ, whose lowest component we denote as σ. The gauge field

couples to N chiral multiplets Ψi, each with charge +1. The lowest components of Ψi will

be denoted as ψi and play the role of homogeneous coordinates on CPN−1. The potential

energy of the worldsheet theory is a sum of F-terms and the D-term

V2d =

N
∑

i=1

|σ|2|ψi|
2 +

g2

2

(

N
∑

i=1

|ψi|
2 − r

)2

(3.4)

Here g2 is a gauge coupling on the worldsheet which is irrelevant for the infra-red quantum

dynamics at energies E ¿ g. At low-energies, the D-term restricts to
∑

i |ψi|
2 = r. After

dividing by U(1) gauge transformations ψi → eiαψi, the gauge theory reduces to the sigma-

model with target space CPN−1. The worldsheet FI parameter r determines the size of

the CPN−1 target space and, for the vortex moduli space, is given in terms of the 4d gauge

coupling [3],

r =
2π

e2
(3.5)

The 4d theta angle also descends to a 2d theta angle on the worldsheet [2, 13].

So far we have discussed the theory with vanishing masses mi = 0. How do non-

zero masses change the worldsheet dynamics of the vortex string? The answer was given

in [11, 1, 2]. The masses break the surviving symmetry group SU(N)diag → U(1)N−1 and

the associated worldsheet Goldstone modes are lifted. Of the CPN−1 moduli space of

solutions, only N isolated solutions remain. These correspond to the Abelian vortex (q, a)

embedded in the N different diagonal elements of Q and A. From the perspective of the

worldsheet theory, the complex masses mi in 4d can be shown to induce twisted masses

mi [23] in 2d, so that the worldsheet potential energy reads

V2d =

N
∑

i=1

|σ − mi|
2|ψi|

2 +
g2

2

(

∑

i=1

|ψi|
2 − r

)2

(3.6)

As anticipated, the CPN−1 target space is lifted, leaving behind N isolated vacua of

the vortex worldsheet given by σ = mi and |ψj |
2 = r δij , for i = 1 . . . , N . Kinks in

the vortex string, interpolating between these different worldsheet vacua, are confined 4d

monopoles [11].

3.2 The superconformal worldsheet: Nf = Nc

In summary, the classical low-energy dynamics of the vortex string in the theory with

Nf = Nc flavors is described by the N = (2, 2) CPNc−1 sigma model, with the 4d masses

mi inducing a classical potential over the target space. In this section we study the quantum

dynamics of this theory. Typically, the CPN−1 sigma-model has a mass gap. However, we

will show that once the masses are tuned so that the 4d theory lies at the Argyres-Douglas
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point, the CPN−1 sigma model flows to an interacting SCFT which we identify as the

AN−1 minimal model.

The quantum effective action for the mass deformed CPN−1 model was studied in [23,

5, 24]. Following [22], one integrates out the charged 2d chiral multiplets Ψa to find an

effective twisted superpotential W̃ for the field strength Σ,

W̃ = −
1

2π

N
∑

i=1

(Σ − mi)

[

log

(

Σ − mi

µ

)

− 1

]

− tΣ (3.7)

where µ is the RG subtraction point. The 2d complexified FI parameter t = r + iθ runs

under RG flow and is exchanged for the invariant dynamical scale Λ = µ exp(−2πt/N).

Because the 2d FI parameter is related to the 4d gauge coupling through r = 2π/e2, the

strong coupling scale Λ on the worldsheet coincides with the 4d strong coupling scale (2.8).

The worldsheet theory has N vacuum states, given by the critical points of W̃ ,

Nc
∏

i=1

(σ − mi) − ΛN = 0 (3.8)

For large mass differences, so |mi−mj| À |Λ|, these vacua coincide with the classical vacua

σ = mi. In the opposite regime, mi = 0, the N vacua descend to the strong coupling scale

σ = ωΛ, where ωN = 1. Comparing the Seiberg-Witten curve at the root of the baryonic

Higgs phase (2.10) to the twisted superpotential (3.7), we see that, for Nf = Nc, the former

may be written as y2 = (∂W̃ (x)/∂x)2. This is the statement that the worldsheet of the

vortex string captures the Seiberg-Witten curve.

Let us now tune the masses so that the 4d theory sits at the Argyres-Douglas point

identified in the previous section. Following (2.13), we set mk = − exp(2πik/N)Λ and

examine the consequences for the worldsheet. The importance of this point was stressed

in [5, 24]. The N critical points (3.8) merge at σ = 0, ensuring that the kinks interpolating

between different vacuum states become massless. This reflects the behavior of monopoles

in the underlying Arygres-Douglas point because, in the Higgs phase, monopoles are con-

fined, trapped to live on the vortex string where they appear as kinks. It was conjectured

in [24] that the 2d theory becomes an interacting SCFT at the point (2.13). To see that

this is indeed the case, we expand the twisted superpotential (3.7) at this point for small

σ/Λ to find

W̃ = c0
ΣN+1

ΛN
+ . . . (3.9)

where c0 is an overall normalization and . . . refer to irrelevant operators. We see that

the familiar logarithms of the CPN−1 sigma-model are replaced by a polynomial Landau-

Ginzburg model. The Käher potential of the theory is unknown at this strongly coupled

point. However, this is unimportant because, while the superpotential is protected by non-

renormalization theorems, the Kähler potential is expected to adjust itself under RG flow

so that the theory flows to an interacting N = (2, 2) SCFT which is identified with the

AN−1 minimal model [25 – 27]. The central charge of this 2d SCFT is

c = 3 −
6

N + 1
. (3.10)
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Representation theory of the N = (2, 2) superconformal algebra relates the dimension D

of chiral primary operators to the charge R under the U(1)R symmetry: D = 1
2
R. The

CPN−1 sigma-model has a classical U(1)R symmetry which is anomalous in the quantum

theory, with only a Z2N subgroup surviving. This surviving discrete group is further broken

explicitly by generic twisted masses mi. However, at the critical point in parameter space,

where the theory is governed by (3.9), an accidental U(1)R symmetry is restored in the

infra-red, as required by superconformal invariance. This mirrors the story for the U(1)R
symmetry in four dimensions; indeed, the worldsheet U(1)R is inherited from the 4d U(1)R.

Since the twisted superpotential necessarily has R-charge 2, the R-charge of the twisted

chiral multiplet Σ is given by R[Σ] = 2/(N +1). The spectrum of chiral primary operators

therefore have dimensions Dj = j/(N + 1) where j = 1, . . . , N − 1. (The addition of the

operator ΣN with j = N is redundant since it may be absorbed by a constant shift of Σ).

We may identify each of these relevant deformations in terms of the mass parameters mi.

To do this, rewrite

N
∏

i=1

(σ − mi) = σN +

N−1
∑

j=2

νj σN−j (3.11)

where there is no ν1 since we have chosen
∑N

i=1 mi = 0. The conformal point (2.13) in

parameter space corresponds to νj = 0 for j = 1, . . . , N − 1 and νN = ΛN . We expand

the twisted superpotential (3.7) about this point, writing νj = ν̂j for j = 1, . . . , N − 1 and

νN = ΛN + ν̂N , to find

δW̃ =
N

∑

j=2

cj ν̂j ΣN−j+1 + . . . (3.12)

which is to be compared to (2.19), giving the map between bulk and worldsheet chiral

operators: ΣN−j+1 ↔ SN−j+2. The dimensions of the relevant perturbations are

D[ν̂j] =
j

N + 1
j = 2, . . . , N (3.13)

in agreement with the four-dimensional result (2.17).

The vortex string thus provides a map between the A2N−1 series of 4d N = 2 SCFTs,

and the AN−1 series of 2d N = (2, 2) SCFTs. Although only one half of the 4d relevant

operators are realized on the worldsheet (those that leave us at the root of the baryonic

Higgs branch), the general feature (2.18) of 4d SCFTs ensures that we can reconstruct the

full spectrum of relevant operators from the worldsheet.

Relationships between 4d SCFTs and 2d minimal models have been described pre-

viously. In particular, the spectrum of BPS states in the vicinity of an Argyres-Douglas

point was shown to bear many similarities to massive deformations of 2d SCFTs [28]. The

vortex string provides a rationale for this correspondence, with the 4d BPS states mapping

to the 2d BPS states.
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3.3 Generalization to Nf > Nc

So far we have examined the superconformal point only for Nf = Nc. We now briefly

discuss the generalization to Nc < Nf ≤ 2Nc − 1 flavors. For distinct masses, there are
(Nf

Nc

)

different roots of the baryonic Higgs phase. We choose to work with the root which

classically corresponds to the vacuum Φ = diag(m1, . . . ,mNc) and, as in section 2, we

relabel the (Nf − Nc) remaining masses as m̃i = mNc+i.

It is a simple exercise to expand the curve (2.10) about the superconformal point (2.11)

to extract the dimensions of chiral primary operators in the four dimensional SCFT with

Nf > Nc. For generic non-zero masses m̃i one finds that the singularity is unaltered,

corresponding once again to a SCFT with scaling dimensions (2.17). The excess masses m̃i

in this case are irrelevant deformations. However, this changes when some of the masses

m̃i vanish. In this situation the singularity is partially resolved. Consider the extreme

case m̃i = 0 for all i = 1, . . . , Nf − Nc. Expanding the curve about the superconformal

point (2.11) now gives,

y2 ≈ x2Nc + 4Λ2Nc−Nf xNf−Nc

Nc
∑

j=1

ŝj xNc−j + 2xNc





Nc
∑

j=2

ν̂j xNc−j



 +





Nc
∑

j=2

ν̂j xNc−j





2

+ . . .

where . . . are irrelevant terms. The relative scaling dimensions of the various perturbations

are now given by D[νj ] = j[x] and D[sj ] = (2Nc − Nf + j)[x]. The overall normalization

remains as before, giving us the dimensions

D[ν̂j] =
j

2Nc − Nf + 1
, D[ŝj] =

2Nc − Nf + j

2Nc − Nf + 1
(3.14)

We will now show how this behavior is captured by the worldsheet. Vortex strings in the

theory with Nf > Nc have a rather different property from those in the Nf = Nc theory:

their scale size is a collective coordinate. (See [29] for a review). An effective dynamics

for the string was proposed in [3]. It is an N = (2, 2) supersymmetric U(1) gauge theory

with Nc chiral multiplets Ψi of charge +1 and twisted mass mi. There are a further

(Nf −Nc) chiral multiplets Ψ̃j of charge −1 and twisted mass m̃j. The scalar potential on

the worldsheet is given by

V2d =

Nc
∑

i=1

|σ − mi|
2|ψi|

2 +

Nf−Nc
∑

i=1

|σ − m̃i|
2|ψ̃i|

2 +
g2

2





Nc
∑

i=1

|ψi|
2 −

Nf−Nf
∑

j=1

|ψ̃j |
2 − r





2

When the masses vanish, mi = m̃i = 0, the extra modes ψ̃i provide the worldsheet theory

with a non-compact moduli space of vacua. This non-compact direction corresponds to the

scaling mode of the vortex. For generic values of the masses, this worldsheet theory was

shown to share its BPS spectrum with the 4d theory in which the vortex lives [6, 2]. Here

we examine this theory at the superconformal point.

Integrating out the chiral multiplets, the effective worldsheet theory is governed by the

twisted superpotential,

W̃ = −
1

2π

Nc
∑

i=1

(Σ−mi)

[

log

(

Σ−mi

µ

)

−1

]

+
1

2π

Nf−Nc
∑

j=1

(Σ−m̃j)

[

log

(

Σ−m̃j

µ

)

−1

]

−tΣ
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The superconformal point on the worldsheet occurs when all critical points coincide,

Nc
∏

i=1

(σ − mi) = σNc + Λ2Nc−Nf

Nf−Nc
∏

j=1

(σ − m̃j) (3.15)

which is to be understood as an equation for the masses mi for fixed m̃j. Notice that, as

expected, the equation coincides with the four dimensional superconformal point defined

in (2.11). The nature of the worldsheet SCFT depends on the masses m̃i. For m̃i 6= 0,

expanding the twisted superpotential about the superconformal point gives

W̃ ∼
ΣN+1

Λ2Nc−Nf
∏

j m̃j
, (3.16)

which we recognize once again as the AN−1 N = (2, 2) SCFT. However, when m̃j = 0 for

some j, the nature of the superconformal point changes. On a technical level this occurs

because we may no longer expand W̃ in σ/m̃j . Consider the extreme case when m̃j = 0

for all j = 1, . . . , Nf −Nc. It is simple to repeat the computation above to find worldsheet

superpotential

W̃ ∼
Σ2Nc−Nf +1

Λ2Nc−Nf
(3.17)

corresponding to a reduced A2Nc−Nf−1 SCFT. The dimensions of relevant perturbations

are now given by

D[ν̂j] =
j

2Nc − Nf + 1
(3.18)

in agreement with the four dimensional theory (3.14). Before moving on, we pause to

note that the validity our starting worldsheet theory is in some doubt in the case m̃j = 0.

A classical infra-red divergence means that the scaling modes of the vortex string are

non-normalizable [30, 31], a fact that is not obviously captured in the worldsheet theory

described above. For this reason, one might expect the worldsheet theory to be valid

only when m̃i 6= 0, which ensures that the the infra-red divergence is rendered finite [32].

The result (3.18) shows that, at the superconformal point, the proposed worldsheet theory

dynamically freezes the scaling modes when m̃i = 0. This, coupled with the resulting

agreement with the four-dimensional SCFT, suggests that the worldsheet theory continues

to capture the quantum physics of the vortex string even when m̃i = 0.

3.4 Moving on the Higgs branch

When mi = m̃i = 0, the four dimensional theory with Nf > Nc has a Higgs branch of

vacua of complex dimension Nc(Nf − Nc). A gauge invariant description of this branch is

provided by expectation values for the meson and baryon operators

M j
i = Q̃j

aQ
a
i , Bi1...iNc

= εa1...aNc
Qa1

i1
. . . Q

aNc

iNc
, B̃i1...iNc = εa1...aNc Q̃i1

a1
. . . Q̃

iNc
aNc

These are not all independent, but satisfy a number of polynomial relations which must be

imposed, together with the D-term (2.1) and F-term equations (2.2), to describe the Higgs
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branch in the gauge invariant fashion — see [18] for more details. The presence of the FI

parameter in the D-term (2.1) deforms, but does not lift, the Higgs branch.3

Let us return momentarily to a description of the Higgs branch in terms of the gauge

non-invariant fields. A combination of gauge and flavor rotations allows the general solution

to the D-term (2.1) and F-term (2.2) equations to be put in the form [18]

Qa
i = qa δa

i , Q̃i
a = q̃a δi

a+Nc
no sum on a (3.19)

subject to |qa|2 − |q̃a|
2 = v2 for each a = 1, . . . , Nc. Note that q̃a = 0 for a > Nf − Nc,

so this parametrization describes a (Nf − Nc) dimensional slice of the Higgs branch. To

identify a point on the Higgs branch of the form (3.19), it is sufficient to give only the

values of the meson field M i
j , whose non-vanishing components may be written in the form

of an Nc × (Nf − Nc) matrix,

M̂ j
i = M j+Nc

i i = 1, . . . , Nc , j = 1, . . . Nf − Nc (3.20)

After this small digression, we now return to the vortex worldsheet. So far we have discussed

the theory on the vortex only at a special point (2.3), which we may call the origin of the

Higgs branch. It is defined in terms of the gauge invariant fields by

Origin : M = B̃ = 0 and B1...Nc = vNc (3.21)

with all other components of B vanishing. Here we would like to ask how the vortex

worldsheet theory responds to motion in the Higgs branch. We will show that sitting on a

point in the Higgs branch specified by M̂ induces a gauge invariant superpotential on the

vortex string worldsheet,

W ∼ M̂ j
i Ψ̃jΨ

i (3.22)

This superpotential partially lifts the vortex moduli space. When M̂ is of maximal rank

(Nf − Nc), the surviving vortex moduli space is CP2Nc−Nf−1. This reduction from Nc

to (2Nc − Nf ) is compatible with the A2Nc−Nf−1 SCFT we found in the previous section

when m̃j = 0. A relationship between the 4d Higgs branch and 2d complex masses is also

suggested by the brane picture [23].

To see that (3.22) is correct, we return to the Bogomolnyi equations for the vortex. The

equations (3.1) were derived under the assumption that Q̃ = 0. Relaxing this condition,

the full Bogomolnyi equations are given by

D1Qi = iD2Qi , D1Q̃
i = iD2Q̃

i ,
1

e2
F12 =

∑

i

(QiQ
†
i − Q̃i†Q̃i) − v2 (3.23)

together with the F-term condition

Nf
∑

i=1

Qa
i Q̃

i
b = 0 . (3.24)

3In the language of [18], the non-baryonic branch is lifted by the FI parameter, while the baryonic

branch survives, deformed.
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When Q̃ has a vev, the space of solutions to these equations is reduced compared to the case

where we can set Q̃ = 0. The troublesome equation is the second in (3.23). Components

of Q̃ which have an expectation value have no non-trivial solutions to this equation. In the

Abelian case this follows from the fact that there is no holomorphic line bundle of negative

degree. (It may also be seen through a direct study of the Bogomolnyi equations [33, 34]).

Let us see the effect in the non-Abelian case. The collective coordinates ψa, which provide

homogeneous coordinates on CPN−1 tell us how the Abelian gauge potential a(x1, x2)

describing a vortex profile is embedded in the non-Abelian gauge group. The dictionary is

Aa
b (x

1, x2) = ψaψ̄b a(x1, x2) (3.25)

Writing z = x1 + ix2, the equation for Q̃ reads

(DzQ̃
i)a = ∂zQ̃

i
a + iaz ψ̄a

Nc
∑

b=1

ψb Q̃i
b = 0 (3.26)

This can be satisfied trivially by ∂Q̃ = 0 only if the vortex sits inside the U(Nc) gauge

group in such a way that
∑

b ψb Q̃i
b = 0. At the point (3.19) on the Higgs branch, this

means that ψa = 0 for all a = 1, . . . , Nc such that q̃a 6= 0. In terms of the gauge invariant

meson observables, this condition can be re-expressed as

Nc
∑

i=1

M̂ j
i ψi = 0 for each j = 1, . . . , Nf − Nc (3.27)

which is indeed a subset of the restrictions that arises from the worldsheet superpoten-

tial (3.22): ∂W/∂ψ̃j = 0. The remaining restrictions arising from the worldsheet superpo-

tential are given by,

∂W

∂ψi
=

∑

j

M̂ j
i ψ̃j = 0 for each i = 1, . . . , Nc (3.28)

These conditions remove the scaling modes ψ̃j of the vortex string. Let us now see that

these too are implied by the four-dimensional equations of motion. As we mentioned in the

last section, these scaling modes can be traced to the presence of the excess scalar fields

Qi+Nc , i = 1, . . . , Nf − Nc, that do not gain an expectation value. At the origin of the

Higgs branch (3.21) these fields have a profile of the form

Qa
i+Nc

(x1, x2) = ψaψ̃i q̃(x
1, x2; |ψ̃i|) (3.29)

where q̃ is the profile of an Abelian scalar field, of the type discussed in [29], and satisfies

the boundary conditions q̃ → 0 as x → ∞. This condition holds at the origin of the

Higgs branch (3.21). However, once we move into the interior of Higgs branch, and the

mesonic field M̂ is non-vanishing, these modes fall foul of the F-term condition (3.24).

Equation (3.28) imposes the requirement of the F-term on the worldsheet.

In summary, we have shown that the space of solutions to the vortex equations (3.23)

and (3.24) at a non-trivial point on the Higgs branch is given by the zero set of the

superpotential (3.22). The remaining solutions are 1/2-BPS, requiring that the worldsheet

theory has a vacuum preserving N = (2, 2) supersymmetry. Happily, for Nf < 2Nc, it

does.

– 15 –



J
H
E
P
1
2
(
2
0
0
6
)
0
5
1

3.5 A comment on S-duality and mirror symmetry

So far we have focussed only on asymptotically free theories with Nf < 2Nc. Here we

make some (very) brief remarks about the scale invariant theory with Nf = 2Nc. The

complex gauge coupling τ = 2πi/e2 − θ is an exactly marginal parameter of the theory.

The Seiberg-Witten curve is given by [10]

y2 =

Nc
∏

a=1

(x − φa)
2 + h(q)(h(q) + 2)

Nf
∏

i=1

(x − h(q)mS − mi) (3.30)

where q = e2πiτ at weak coupling but may, in general, receive instanton corrections. The

definition of the modular function h(q) can be found in [8, 10], while the singlet mass is

defined by mS =
∑

i mi/Nf . The modular properties of the curve imply a Γ0(2) duality of

the field theory, where Γ0(2) is the subset of SL(2,Z) matrices with even upper off-diagonal

entry.

The corresponding vortex theory is a U(1) gauge theory with Nc chiral multiplets of

charge +1 and a further Nc chiral multiplets of charge −1. It is scale invariant, with the

complex FI parameter t = r + iθ ≡ −iτ an exactly marginal parameter.

The modular properties of the four-dimensional theory strongly suggest that there

is a similar duality group at play in the two dimensional theory, interchanging kinks and

elementary excitations. Dualities of this form are, of course, familiar in two dimensions [35]

although, to my knowledge, the exact structure of the duality in the present system has

not been worked out. Although the duality involves an inversion of the Kähler class of

the target space, reminiscent of T-duality, it appears to differ from the mirror symmetry

of [36]. It would be interesting to explore this system further.
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